Bivariate FIGARCH and fractional cointegration

نویسندگان

  • Celso Brunetti
  • Christopher L. Gilbert
چکیده

We consider the modelling of volatility on closely related markets. Univariate fractional Ž . volatility FIGARCH models are now standard, as are multivariate GARCH models. In this paper, we adopt a combination of the two methodologies. There is as yet little consensus on the methodology for testing for fractional cointegration. The contribution of this paper is to demonstrate the feasibility of estimating and testing cointegrated bivariate FIGARCH models. We apply these methods to volatility on the NYMEX and IPE crude oil markets. We find a common order of fractional integration for the two volatility processes and confirm that they are fractionally cointegrated. An estimated error correction FIGARCH model indicates that the preponderant adjustment is of the IPE towards NYMEX. q 2000 Elsevier Science B.V. All rights reserved. JEL classification: G0; C2; C3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Integration and Cointegration in US Financial Time Series Data

This paper examines several US monthly financial time series data using fractional integration and cointegration techniques. The univariate analysis based on fractional integration aims to determine whether the series are I(1) (in which case markets might be efficient) or alternatively I(d) with d < 1, which implies mean reversion. The multivariate framework exploiting recent developments in fr...

متن کامل

Long term hedging of the Australian All Ordinaries Index using a bivariate error correction FIGARCH model

This article compares the performance of bivariate error correction GARCH and FIGARCH models when estimating long term dynamic minimum variance hedge ratios (MVHRs) on the Australian All Ordinaries Index. The paper therefore introduces the bivariate error correction FIGARCH model into the hedging literature, which to date has only employed the GARCH class of processes. This is important for tho...

متن کامل

Dynamic Hedging using a Bivariate Markov Switching FIGARCH model

This paper develops a bivariate Markov Switching FIGARCH (MS-FIGARCH) process with constant and time varying transition probabilities as a way of modeling spot futures dynamics. An application of the model illustrates that the S&P500 and its futures exhibit long memory in volatility and structural breaks that are driven by changes in the cost of carry. The model with constant transition probabi...

متن کامل

Cointegration from a Pure-Jump Transaction-Level Price Model

We propose a new transaction-level bivariate log-price model, which yields fractional or standard cointegration. To the best of our knowledge, all existing models for cointegration require the choice of a fixed sampling interval ∆t. By contrast, our proposed model is constructed at the transaction level, thus determining the properties of returns at all sampling frequencies. The two ingredients...

متن کامل

Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures

In this paper we extend the univariate FIGARCH and FIAPARCH models to a bivariate framework. We estimate bivariate error correction FIGARCH and FIAPARCH models between the All Ordinaries Index and its SPI futures using constant correlation and diagonal parameterisations. We therefore employ a flexible estimation approach that captures the long run equilibrium relationship between the two market...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001